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Abstract

We have been developing a system named “mutual
tele-existence” which allows for face-to-face commu-
nication between remote users [14]. Although image-
based rendering (IBR) is suitable for rendering hu-
man figures with a complex geometry, conventional
IBR techniques cannot readily be applied to our sys-
tem. Because most IBR techniques include time-
consuming processes, they cannot capture the source
images and simultaneously render the destination im-
ages. In this paper, we propose a novel method focus-
ing on real-time rendering. Moreover, we introduce
equivalent depth of field to measure the fidelity of the
synthesized image. If the object is in this range, ac-
curate rendering is guaranteed. Then, we introduce
a prototype machine that has 12 synchronized cam-
eras on the linear actuator. Finally, we present some
experimental results of our prototype machine.

1 Introduction

We have been developing a system which al-
lows for face-to-face communication between remote
users[14]. In this system, users who are far apart
in the real world share computer-generated three-
dimensional space. Figure 1 shows the concept be-
hind our system. In this system, users communicate
with one another by each entering a booth which has
a cylindrical structure surrounding the user. This
structure works both as the display device and the

image-capturing device. It displays stereoscopic im-
ages of the computer-generated three-dimensional
space around the user just like CAVE[3], and simul-
taneously captures a set of images from all sides of
the user.

Figure 1: The concept of our tele-communication
system.

In most conventional tele-conferencing systems,
users exchange images from a fixed viewpoint only.
However, we believe that our system should dis-
play the images from the users’ eye position in the
computer-generated three-dimensional space, in or-
der to provide the users with the feeling that they
are all in the same place, i.e. ”presence.”

However, the set of images captured by the booth
is the one from the fixed orbit around the booth,
and the images to be displayed are the ones from the



users’ viewpoints in the computer-generated space.
Therefore, generating images from arbitrary view-
points using a set of images from the fixed orbit would
be a technological key to realizing our system.

A considerable amount of research is available
about this kind of rendering technique [2], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13]; however, all these
studies present the same problem in their application
to tele-conferencing systems, namely, that take too
much time.

For example, some techniques take the approach of
making use of geometric information [6],[10],[11],[12].
One typical piece of geometric information is a
”depth map,” the depth values which corresponds to
each pixel of the image. Once the depth map is ac-
quired, it is easy to synthesize the images from arbi-
trary viewpoints. However, the process of acquiring
this depth map is very time-consuming and lacks ro-
bustness.

In another approach, geometric information is not
used. Instead, a subset of the ”plenoptic function”[1]
as a representation of the data stage is used[5],[8].
The plenoptic function is a 5-dimensional function
which describes the ray’s intensity in all positions and
at all angles. If the plenoptic function could be ac-
quired, it would also be possible to acquire images
from arbitrary viewpoints. However, this is actually
impossible. So, the dimension of the prenoptic func-
tion is usually reduced from 5 to 4 by assuming a
free space and transparency of the route of the ray.
But, since the amount of data of this 4-dimensional
function is still too large, it is acquired in an off-line
process. The technique using the representation of
EPI (epipolar-plane images) [7] can also be catego-
rized here.

To overcome the difficulties outlined above, we here
propose a novel method focusing on real-time render-
ing of moving objects in the real world. This method
has the following features:

1. Only one parameter of the object’s distance is
needed. Thus, geometric information such as a
”depth map” is not required.

2. Fast rendering is possible by making use of
graphic hardware acceleration of texture map-
ping.

3. The data processed by the rendering computer
are reduced in advance at the stage of capturing
the source images.

This paper is organized as follows.
In Section2, we describe the basic theory of our

rendering method. Although our method does not
need explicit geometric information (Feature 1), the
distance of one typical point of the object is required.
This is analogous to the way in which we take photos
with a single camera: we adjust the focal distance to
one point of the object. In this analogy, we define
“equivalent focal distance” and “equivalent depth of
field,” which represent the supposed distance from
cameras to objects and the range of distance within
which objects are guaranteed correct image synthe-
sis, respectively. Fast-rendering algorithms are also
included using texture-mapping (Feature 2) in this
section.

In Section 3, we introduce our prototype machine,
which has 12 synchronized cameras. These cameras,
which are located in a row on the linear actuator,
will in future acquire images during a reciprocating
motion. However, the cameras are still at present. In
this prototype system, the rendering machine does
not capture the image signals from all 12 cameras
but only the one signal that has to be rendered at
the time. Because of this, this system uses only one
video-capture device, and the amount of image data
required to deal with it is extremely reduced (Feature
3).

Next, in Section 4, we show some experimental re-
sults using this prototype system. We succeed in real-
time rendering of moving objects in the real world.

Finally, in Section 5, we present our conclusions
and project out future work.

2 Image Synthesis Method

2.1 Plenoptic Function

The plenoptic function[1] is a 5-dimensional function
which describes the ray’s intensity in all positions
and at all angles. If the plenoptic function could
be achieved, images from arbitrary viewpoints could
also be obtained. Since this is actually impossible in
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the real world, there is an approach which reduces the
dimension of the plenoptic function from 5 to 4 by as-
suming a free space and the transparency of the ray’s
route [5],[8]. Although this 4-dimensional function
is easier to achieve than the plenoptic function, the
amount of data is still considerably large. Moreover,
the rendering method using such a function requires
the ray to have relatively high-sampling density. Be-
cause of these characteristics, the ray-sampling pro-
cess of this kind of technique is very time-consuming.
Thus, the objects are assumed to be static. In the
following subsection, we describe the method we em-
ployed for our real-time rendering system. Although
this method is based on the concept of the plenop-
tic function, the required sampling densities are rel-
atively low and the rendering process is extremely
simple.

2.2 Basic Theory

Hereafter, we explain our theory in the two-
dimensional space for the sake of simplicity. However,
it can be easily extended to the three-dimensional
space without loss of generality.

Figure 2: Left: Image synthesis at the viewposition
P using a set of cameras Ci which are
aligned on the X-axis. Right: Error be-
tween the desired position x̃P and the syn-
thesized position x̂P of Q on the image
plane, when Q is not at the equivalent focal
distance l0.

In The left of Figure 2, plural cameras (focal
length: f) are aligned so that their centers of pro-

jection Ci(Xi, 0) are located on the X-axis. These
cameras capture the images of the object in region
Z < 0. Each camera has an image plane at length f
from the center of projection Ci, which has a coordi-
nate xi. Let P (XP , ZP ) denote the virtual camera’s
viewpoint (ZP > 0) and suppose this virtual cam-
era also has an image plane: xP . Our purpose is to
describe the method used for synthesizing the image
from P : gP (xP ) using a set of images of camera Ci:
gi(xi).

The ray which makes the image where xP = x̂P

intersects the X-axis at point X = X̂ . If there were
a camera at point X̂ , the image of the ray sampled by
the camera would be the same as that of P , assuming
there is no occluder (free space) and the route has
transparency. However, a case in which there is no
camera at point X̂ could happen at low sampling
densities, i.e. when the intervals of the cameras are
long.

However, the ray which makes the image at xP =
x̂P comes from Q(XQ,−l0), and the ray which makes
the image at xi = x̂i comes from the same point
as well. Assuming that the surface of the object is
diffusive, it can be said that

gP (xP ) = gi(xi) (1)

where the following equation is established between
x̂p, x̂i.

Xi + l0 · x̂i

f
= XP + (l0 + ZP ) · x̂P

f
= XQ (2)

In the equation above, l0 is an approximate distance
to the object, which we call ”equivalent focal dis-
tance.” Note that this value is not an array of dis-
tances like a depth map but, rather, a length to a
representative point of the object’s surface, exactly
like a camera’s focal distance.

Of course, not every point on the surface of the ob-
ject exists at all times on length l0, except for objects
which have a planer surface Z = −l0. In such cases,
the image of Q is synthesized at the wrong position
by the method mentioned above.

For example, in the right of Figure 2, the ray from
Q makes the image at xi = x̂i of camera Ci. However,
using the equivalent focal distance l0, which differs
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from l (the correct distance to Q), the image of Q is
synthesized at position x̂p, whereas the image of Q
should be synthesized at position x̃P . Now, we define
the error of the positions between the synthesized
image and the correct image as:

∆xP ≡ x̂P − x̃P (3)

Then, the following equations are established pro-
viding (X̃t,−l0) denotes the point of intersection of
Z = −l0 and PQ, and (X̂t,−l0) that of Z = −l0 and
Ci, respectively.

∆xP =
f

l0 + zP
(X̂t − X̃t) (4)

X̂t − X̃t =
l − l0

l
(Xi − X̃) (5)

By substituting Equation(5) into Equation(4), we ob-
tain

∆xP =
l − l0

l
· f

l0 + zP
· (Xi − X̃) (6)

Besides,

Xi − X̃ = (X̂ − X̃) + (Xi − X̂)

=
zP

f
· ∆xP + (Xi − X̂) (7)

Finally, by substituting equation (7) into equation
(6), we obtain the following equation:

∆xP =
f(l − l0)

l0(l + ZP )
· (X̂ − Xi) (8)

2.3 Equivalent Depth of Field

Now, let δ denote the maximum error allowed. After
this, we determine the range of l, where |∆xP | ≤ δ
for all X̂ .

As we can see in Equation(8), the absolute error
of the image position |∆xP | is in proportion to |X̂ −
Xi|. Therefore, we choose camera Ci among several
cameras so that |X̂ − Xi| gets the minimum value.
When the cameras are aligned at the intervals ∆X,
we must choose camera Ci so that |X̂ − Xi| ≤ ∆X

2 .
Hence, from Equation(8) it can be said that

|∆xP | ≤ f |l − l0|
l0(l + ZP )

· ∆X

2
(9)

By solving (the right side of Equation(9) = δ) for l,
we obtain two solutions l = l1, l2(l1 ≤ l0 ≤ l2), as
follows:

l1 = l0 · 1

1 + l0+Zp
f
δ

∆X
2 +ZP

(10)

l2 = l0 · 1

1 − l0+Zp
f
δ

∆X
2 +ZP

(11)

Then, |∆xP | ≤ δ is established for all l which satisfies
l1 ≤ l ≤ l2.

If we let δ be the length of one pixel on the im-
age plane, the points on the objects at the distance
within l1 ≤ l ≤ l2 are guaranteed to be synthesized
at actually correct positions whose errors are within
one pixel. We call this range of distance ∆l ≡ l2 − l1
the “equivalent depth of field.” ∆l is a function of
∆X and monotone decreasing.

Figure 3: The graph of the equivalent depth of field.
The equivalent depth of field is expressed
by the length between l1 and l2.

Figure 3 shows a graph plotting l1 and l2 versus
∆X. In this figure, the equivalent depth of field is
expressed by the length between l1 and l2. Note that
l1 = ∞ when ∆X = 2l0 · δ

f
. If we place the cameras

at smaller intervals than 2l0 · δ
f , all the points on the

objects at length l ≥ l1 can be correctly synthesized.

2.4 Rendering Algorithm

In this subsection, we will describe two different al-
gorithms which implement the method mentioned
above.
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Figure 4: Left:Rendering by ray-tracing algorithm.
Right:Rendering by multi-texture-
mapping algorithm.

2.4.1 Ray-Tracing Algorithm

In this algorithm, the image is acquired from the vir-
tual viewpoint P by scanning the rays which intersect
P . See the left of Figure4.

The whole process is as follows:

For each xP = x̂P ,

1. Let ϕ̂ denote the ray which makes the image at
xP = x̂P ; ϕ̂ intersects Z = 0,−l0 at X = X̂, X̂T

respectively, where X̂ = XP + ZP
x̂P

f
and X̂T =

XP + (ZP + l0) x̂P

f .

2. Choose camera Ci, whose X−coordinate Xi is
nearest to X̂ .

3. Obtain x̂i, which is the intersection of the line
from (X̂T ,−l0) to Ci and the image plane of the
camera Ci. This process corresponds with solv-
ing Equation(2) for x̂i.

4. Copy the image of camera Ci at xi = x̂i to that
of the virtual viewpoint P at xP = x̂P , that is
to say: gP (x̂P ) = gi(x̂i).

The algorithm mentioned above includes many rep-
etitions, and the calculation processes which find x̂Q

corresponding to x̂P are rather complicated. There-
fore, this algorithm is not suitable for real-time ren-
dering

2.4.2 Multi-texture Mapping Method

Unlike the algorithm explained above, the one be-
low is very straightforward and designed for real-time
rendering.

See the right of Figure 4. First, we define Γi which
is the region on Z = 0 as:

Γi ≡
(

Xi−1 + Xi

2
,
Xi + Xi+1

2

]
. (12)

Suppose the rays go through P , whose X-intercepts
are within Γi i.e., X̂ ∈ Γi. The closest camera to
these intercepts is surely Ci. If the images from
P corresponding to these rays were rendered with
the previous ray-tracing method, the source images
within Πi would be copied to the destination images
within Φi. Besides, the rays would intersect Z = −l0
within the region Ωi. From a simple similarity, we
can obtain:

len Ωi =
l0
f

· len Πi (13)

len Φi =
f

l0 + ZP
· len Ωi (14)

where “len” expresses the length of the region. From
Equation(13)(14),

len Φi =
l0

l0 + ZP
· len Πi (15)

Because the correspondence between x̂P ∈ Φi and
x̂i ∈ Πi is linear, we can copy the source image
gi(xi ∈ Π) to the destination image gP (xP ∈ Φi)
with the scaling ratio l0/(l0 + ZP ) all at once. By
performing such a procedure for each i, we can ob-
tain the desired image from a virtual viewpoint P
without scanning each ray through P .

Furthermore, this scaling procedure can be done
automactically with a general 3-D graphic library as
follows:

1. Construct a scene consisting of a viewpoint P
and a plane T .

2. For each i, paste the corresponding image of
camera Ci: gi(xi ∈ Πi) to region Ωi on plane
T as a texture-mapping image. By taking the
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ratio [1 pixel of Πi]: [1 pixel of Ωi] as [len Πi]:
[len Ωi] (= f : l0), this process is equal to sim-
ple memory copy without scaling from the image
captured by the camera to the texture-mapping
image.

3. Render the perspective image from P .

Note that none of the processes above includes ex-
plicit scaling procedures, but we can obtain the same
effect. Each image of camera Ci: gi(xi ∈ Πi) is copied
to Ωi on plane T at scaling ratio l0/f . Then, these
images of region Ωi are rendered in the image plane of
P at scaling ratio f/(l0+ZP ). Thus, each gi(xi ∈ Πi)
is rendered on the image plane of P at scaling ratio
l0/(l0 + ZP ) as a result.

This rendering algorithm combines simplicity and
speed by making use of hardware acceleration in tex-
ture mapping such as scaling and smoothing. By em-
ploying this method, our prototype system, which we
describe in the next section, realized real-time render-
ing.

3 Prototype System

3.1 Overall

The left picture of Figure 5 shows our prototype sys-
tem, and that on the right is its block diagram. This
system consists of a camera unit, a rendering PC, and
a control PC.

In the camera unit, 12 small color CCD cam-
eras (Toshiba IK-C40, the length of one pixel δ ∼
0.01mm) are aligned horizontally in a row on the
linear actuator at intervals of 54mm. Very wide-
angle lens (focal distance f = 3.5mm) are attached
to the cameras. In future, the actuator will recipro-
cate while the cameras acquire the image. At present,
the actuator remains still. These cameras are located
on the gantry with rotating 90◦ around their optical
axes. Thus, the direction of their scanning lines is
vertical. Moreover, all these cameras are synchro-
nized by the same genlock signal.

The rendering PC continuously captures a video
signal from the camera unit by one video-capturing
board. Note that if we intended to capture all 12

video signals, 12 video-capturing boards would be re-
quired, which would not be practical. Consequently,
we installed a video switch between the camera unit
and the rendering PC, allowing only one scanning line
among 12 scanning lines to be selectively captured by
one video-capturing board. The timing of switching
channels is synchronized with the cameras’ genlock
signal.

The control PC indicates the channel of this switch
and controls the motion of the linear actuator. This
control PC and the rendering PC exchange data fast
by using a shared memory.

Figure 5: Left:the overview of our prototype system.
Right:the block diagram of our prototype
system.

3.2 Implementation of Rendering

In this subsection, we describe the implementation of
real-time rendering of our prototype system. We em-
ploy the multi-texture-mapping algorithm mentioned
in the previous section.

First, with a virtual viewpoint given by a user, the
rendering PC calcurates the regions of each camera’s
image that are used for multi-texture-mapping. Be-
cause the cameras are aligned horizontally, each re-
gion is made by dividing the whole image of the cam-
era horizonally. Thus, its shape is a vertically long
column.

Next, the information of the region is send to the
control PC and used as an indication of the video
switch. The timing of switching is synchronous with
the camerass’ scanning, and the direction of the cam-
eras’ scanning line is vertical. In this way, the render-
ing PC can selectively capture the necessary column
image from the cameras.
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Then, the captured images are texture-mapped on
a plane at the distance of the equivalent focal distance
in the virtual three-dimensional space. This process
is equal to the simple memory copy mentioned pre-
viously.

Finally, the rendering PC renders the scene by us-
ing a 3D graphic library.

One cycle of all these processes is finished within
video rate (1/30[sec]), so we can say our system real-
izes real-time rendering.

Some conventional IBR systems capture all the im-
ages from the cameras and construct bulky data as a
subset of the plenoptic funcion, whereas our system
reduces the image data to deal with before capturing
them at the analog signal level. On the other hand,
the scaling process is rapidly carried out by digital
graphic hardware. This combination of analog and
digital technologies is the key to real-time rendering.

4 Experimental Result

4.1 Relation between Sampling Den-
sity and Equivalent Depth of Field

In this experiment, we synthesize the images of a
static object with with different camera intervals
∆X.

The upper left of Figure 6 shows the positions of
the cameras, the virtual viewpoint, and the two ob-
jects. The cameras are aligned on Z = 0. The virtual
viewpoint is at Z = 50[mm]. The two objects are on
Z = −350 and −70[mm], respectively.

The upper right shows a graph plotting the equiva-
lent depth of field on condition that the cameras’ pa-
rameters f = 3.5[mm], δ = 0.01[mm], and the equiv-
alent focal distance l0 = 350[mm], i.e., focused on
the front object.

When ∆X = 4[mm], the equivalent depth of field
is 522[mm] and the lower left picture is synthesized.
As we can see, both the image of the back object and
that of the front object are synthesized accurately.

On the other hand, when ∆X = 30[mm], the
equivalent depth of field is 53mm, which is not long
enough to synthesize the image of the back object.

Figure 6: Image synthesis of static objects with dif-
ferent camera intervals ∆X.

The lower right picture shows the discontinuity on
the back object.

4.2 Correct Expression of Occlusion

In this experiment, we compare the multi-texture
mapping algorithm introduced previously with con-
ventional texture mapping using an image from a sin-
gle camera.

The upper part of Figure 7 shows a scene, where
the cameras are aligned on Z = 0 with intervals of
54mm, the moving object is near (0,−1000), and
the virtual viewpoint P is at (200, 500). The ob-
ject shades his face with his hand against the virtual
viewpoint P . Therefore, the object’s face should not
be seen from P .

The lower left of Figure 7 shows the image synthe-
sized by texture-mapping the image in camera C0 on
plane T (Z = −1000). We can see the object’s face,
and the correct occlusion is not expressed. On the
Contraty, the lower right image which is synthesized
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Figure 7: Comparison between the images synthe-
sized by using a single texture (left) and
multiple textures (right). While the one on
the left can not express correct occlusion,
the one on the right can.

by the multi-texture mapping method, succeeds in
expressing the correct occlusion.

5 Conclusions

We introduced a novel image synthesis method for
our tele-communication system focusing on real-time
rendering. Next, we mentioned “equivalent depth of
field” to measure the fidelity of the synthesized im-
ages. Then, we showed a prototype machine which
realized real-time rendering and its results. A topic
of future work will be to synthesize images during re-
ciprocating cameras on a linear actuator. By moving
cameras, our prototype system can synthesize images
at higher spatial sampling densities. Then, extending
an image synthesis method proposed in this paper, we
will investigte a method where cameras are arranged
around the object.
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